欧美亚洲中文,在线国自产视频,欧洲一区在线观看视频,亚洲综合中文字幕在线观看

      1. <dfn id="rfwes"></dfn>
          <object id="rfwes"></object>
        1. 站長資訊網(wǎng)
          最全最豐富的資訊網(wǎng)站

          八大排序算法是什么

          八大排序算法是:1、直接插入排序;2、希爾排序;3、簡單選擇排序;4、堆排序;5、冒泡排序;6、快速排序;7、歸并排序;8、桶排序/基數(shù)排序。

          八大排序算法是什么

          本教程操作環(huán)境:windows10系統(tǒng)、Dell G3電腦。

          排序有內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。

          我們這里說說八大排序就是內(nèi)部排序。

          八大排序算法是什么

          當(dāng)n較大,則應(yīng)采用時(shí)間復(fù)雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸并排序序。

          快速排序:是目前基于比較的內(nèi)部排序中被認(rèn)為是最好的方法,當(dāng)待排序的關(guān)鍵字是隨機(jī)分布時(shí),快速排序的平均時(shí)間最短;

          1.插入排序—直接插入排序(Straight Insertion Sort)


          基本思想:

          將一個(gè)記錄插入到已排序好的有序表中,從而得到一個(gè)新,記錄數(shù)增1的有序表。即:先將序列的第1個(gè)記錄看成是一個(gè)有序的子序列,然后從第2個(gè)記錄逐個(gè)進(jìn)行插入,直至整個(gè)序列有序?yàn)橹埂?/p>

          要點(diǎn):設(shè)立哨兵,作為臨時(shí)存儲和判斷數(shù)組邊界之用。

          直接插入排序示例:

          八大排序算法是什么

          如果碰見一個(gè)和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后順序沒有改變,從原無序序列出去的順序就是排好序后的順序,所以插入排序是穩(wěn)定的。

          算法的實(shí)現(xiàn):

          void print(int a[], int n ,int i){ 	cout<<i <<":"; 	for(int j= 0; j<8; j++){ 		cout<<a[j] <<" "; 	} 	cout<<endl; }   void InsertSort(int a[], int n) { 	for(int i= 1; i<n; i++){ 		if(a[i] < a[i-1]){               //若第i個(gè)元素大于i-1元素,直接插入。小于的話,移動有序表后插入 			int j= i-1;	 			int x = a[i];		 //復(fù)制為哨兵,即存儲待排序元素 			a[i] = a[i-1];           //先后移一個(gè)元素 			while(x < a[j]){	 //查找在有序表的插入位置 				a[j+1] = a[j]; 				j--;		 //元素后移 			} 			a[j+1] = x;		 //插入到正確位置 		} 		print(a,n,i);			//打印每趟排序的結(jié)果 	} 	 }  int main(){ 	int a[8] = {3,1,5,7,2,4,9,6}; 	InsertSort(a,8); 	print(a,8,8); }

          時(shí)間復(fù)雜度:O(n^2).

          其他的插入排序有二分插入排序,2-路插入排序。

          2. 插入排序—希爾排序(Shell`s Sort)


          希爾排序是1959 年由D.L.Shell 提出來的,相對直接排序有較大的改進(jìn)。希爾排序又叫縮小增量排序

          基本思想:

          先將整個(gè)待排序的記錄序列分割成為若干子序列分別進(jìn)行直接插入排序,待整個(gè)序列中的記錄“基本有序”時(shí),再對全體記錄進(jìn)行依次直接插入排序。

          操作方法:

          • 選擇一個(gè)增量序列t1,t2,…,tk,其中ti>tj,tk=1;

          • 按增量序列個(gè)數(shù)k,對序列進(jìn)行k 趟排序;

          • 每趟排序,根據(jù)對應(yīng)的增量ti,將待排序列分割成若干長度為m 的子序列,分別對各子表進(jìn)行直接插入排序。僅增量因子為1 時(shí),整個(gè)序列作為一個(gè)表來處理,表長度即為整個(gè)序列的長度。

          希爾排序的示例:shell排序的排序過程

          假設(shè)待排序文件有10個(gè)記錄,其關(guān)鍵字分別是:49,38,65,97,76,13,27,49,55,04。

          增量系列的取值依次為:5,3,1

          八大排序算法是什么

          算法實(shí)現(xiàn):

          我們簡單處理增量序列:增量序列d = {n/2 ,n/4, n/8 …..1} n為要排序數(shù)的個(gè)數(shù)

          即:先將要排序的一組記錄按某個(gè)增量d(n/2,n為要排序數(shù)的個(gè)數(shù))分成若干組子序列,每組中記錄的下標(biāo)相差d.對每組中全部元素進(jìn)行直接插入排序,然后再用一個(gè)較小的增量(d/2)對它進(jìn)行分組,在每組中再進(jìn)行直接插入排序。繼續(xù)不斷縮小增量直至為1,最后使用直接插入排序完成排序。

          void print(int a[], int n ,int i){ 	cout<<i <<":"; 	for(int j= 0; j<8; j++){ 		cout<<a[j] <<" "; 	} 	cout<<endl; } /**  * 直接插入排序的一般形式  *  * @param int dk 縮小增量,如果是直接插入排序,dk=1  *  */  void ShellInsertSort(int a[], int n, int dk) { 	for(int i= dk; i<n; ++i){ 		if(a[i] < a[i-dk]){			//若第i個(gè)元素大于i-1元素,直接插入。小于的話,移動有序表后插入 			int j = i-dk;	 			int x = a[i];			//復(fù)制為哨兵,即存儲待排序元素 			a[i] = a[i-dk];			//首先后移一個(gè)元素 			while(x < a[j]){		//查找在有序表的插入位置 				a[j+dk] = a[j]; 				j -= dk;			 //元素后移 			} 			a[j+dk] = x;			//插入到正確位置 		} 		print(a, n,i ); 	} 	 }  /**  * 先按增量d(n/2,n為要排序數(shù)的個(gè)數(shù)進(jìn)行希爾排序  *  */ void shellSort(int a[], int n){  	int dk = n/2; 	while( dk >= 1  ){ 		ShellInsertSort(a, n, dk); 		dk = dk/2; 	} } int main(){ 	int a[8] = {3,1,5,7,2,4,9,6}; 	//ShellInsertSort(a,8,1); //直接插入排序 	shellSort(a,8);			  //希爾插入排序 	print(a,8,8); }

          希爾排序時(shí)效分析很難,關(guān)鍵碼的比較次數(shù)與記錄移動次數(shù)依賴于增量因子序列d的選取,特定情況下可以準(zhǔn)確估算出關(guān)鍵碼的比較次數(shù)和記錄的移動次數(shù)。目前還沒有人給出選取最好的增量因子序列的方法。增量因子序列可以有各種取法,有取奇數(shù)的,也有取質(zhì)數(shù)的,但需要注意:增量因子中除1 外沒有公因子,且最后一個(gè)增量因子必須為1。希爾排序方法是一個(gè)不穩(wěn)定的排序方法。

          3. 選擇排序—簡單選擇排序(Simple Selection Sort)


          基本思想:

          在要排序的一組數(shù)中,選出最?。ɑ蛘咦畲螅┑囊粋€(gè)數(shù)與第1個(gè)位置的數(shù)交換;然后在剩下的數(shù)當(dāng)中再找最?。ɑ蛘咦畲螅┑呐c第2個(gè)位置的數(shù)交換,依次類推,直到第n-1個(gè)元素(倒數(shù)第二個(gè)數(shù))和第n個(gè)元素(最后一個(gè)數(shù))比較為止。

          簡單選擇排序的示例:

          八大排序算法是什么

          操作方法:

          第一趟,從n 個(gè)記錄中找出關(guān)鍵碼最小的記錄與第一個(gè)記錄交換;

          第二趟,從第二個(gè)記錄開始的n-1 個(gè)記錄中再選出關(guān)鍵碼最小的記錄與第二個(gè)記錄交換;

          以此類推…..

          第i 趟,則從第i 個(gè)記錄開始的n-i+1 個(gè)記錄中選出關(guān)鍵碼最小的記錄與第i 個(gè)記錄交換,

          直到整個(gè)序列按關(guān)鍵碼有序。

          算法實(shí)現(xiàn):

          void print(int a[], int n ,int i){ 	cout<<"第"<<i+1 <<"趟 : "; 	for(int j= 0; j<8; j++){ 		cout<<a[j] <<"  "; 	} 	cout<<endl; } /**  * 數(shù)組的最小值  *  * @return int 數(shù)組的鍵值  */ int SelectMinKey(int a[], int n, int i) { 	int k = i; 	for(int j=i+1 ;j< n; ++j) { 		if(a[k] > a[j]) k = j; 	} 	return k; }  /**  * 選擇排序  *  */ void selectSort(int a[], int n){ 	int key, tmp; 	for(int i = 0; i< n; ++i) { 		key = SelectMinKey(a, n,i);           //選擇最小的元素 		if(key != i){ 			tmp = a[i];  a[i] = a[key]; a[key] = tmp; //最小元素與第i位置元素互換 		} 		print(a,  n , i); 	} } int main(){ 	int a[8] = {3,1,5,7,2,4,9,6}; 	cout<<"初始值:"; 	for(int j= 0; j<8; j++){ 		cout<<a[j] <<"  "; 	} 	cout<<endl<<endl; 	selectSort(a, 8); 	print(a,8,8); }

          簡單選擇排序的改進(jìn)——二元選擇排序

          簡單選擇排序,每趟循環(huán)只能確定一個(gè)元素排序后的定位。我們可以考慮改進(jìn)為每趟循環(huán)確定兩個(gè)元素(當(dāng)前趟最大和最小記錄)的位置,從而減少排序所需的循環(huán)次數(shù)。改進(jìn)后對n個(gè)數(shù)據(jù)進(jìn)行排序,最多只需進(jìn)行[n/2]趟循環(huán)即可。具體實(shí)現(xiàn)如下:

          /** 這是偽函數(shù), 邏輯判斷不嚴(yán)謹(jǐn) void selectSort(int r[],int n) { 	int i ,j , min ,max, tmp; 	for (i=1 ;i <= n/2;i++) {   		// 做不超過n/2趟選擇排序  		min = i; max = i ; //分別記錄最大和最小關(guān)鍵字記錄位置 		for (j= i+1; j<= n-i; j++) { 			if (r[j] > r[max]) {  				max = j ; continue ;  			}   			if (r[j]< r[min]) {  				min = j ;  			}    	  }   	  //該交換操作還可分情況討論以提高效率 	  tmp = r[i-1]; r[i-1] = r[min]; r[min] = tmp; 	  tmp = r[n-i]; r[n-i] = r[max]; r[max] = tmp;    	}  }  */ void selectSort(int a[],int len) {         int i,j,min,max,tmp;           for(i=0; i<len/2; i++){  // 做不超過n/2趟選擇排序              min = max = i;               for(j=i+1; j<=len-1-i; j++){   				//分別記錄最大和最小關(guān)鍵字記錄位置                 if(a[j] > a[max]){                       max = j;                       continue;                   }                   if(a[j] < a[min]){                       min = j;                   }               }   			//該交換操作還可分情況討論以提高效率             if(min != i){//當(dāng)?shù)谝粋€(gè)為min值,不用交換                   tmp=a[min];  a[min]=a[i];  a[i]=tmp;               }               if(min == len-1-i && max == i)//當(dāng)?shù)谝粋€(gè)為max值,同時(shí)最后一個(gè)為min值,不再需要下面操作                   continue;               if(max == i)//當(dāng)?shù)谝粋€(gè)為max值,則交換后min的位置為max值                   max = min;               if(max != len-1-i){//當(dāng)最后一個(gè)為max值,不用交換                   tmp=a[max];  a[max]=a[len-1-i];  a[len-1-i]=tmp;               } 			print(a,len, i);			         }    }

          4. 選擇排序—堆排序(Heap Sort)


          堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進(jìn)。

          基本思想:

          堆的定義如下:具有n個(gè)元素的序列(k1,k2,…,kn),當(dāng)且僅當(dāng)滿足

          八大排序算法是什么

          時(shí)稱之為堆。由堆的定義可以看出,堆頂元素(即第一個(gè)元素)必為最小項(xiàng)(小頂堆)。
          若以一維數(shù)組存儲一個(gè)堆,則堆對應(yīng)一棵完全二叉樹,且所有非葉結(jié)點(diǎn)的值均不大于(或不小于)其子女的值,根結(jié)點(diǎn)(堆頂元素)的值是最小(或最大)的。如:

          (a)大頂堆序列:(96, 83,27,38,11,09)

          (b) 小頂堆序列:(12,36,24,85,47,30,53,91)

          八大排序算法是什么

          初始時(shí)把要排序的n個(gè)數(shù)的序列看作是一棵順序存儲的二叉樹(一維數(shù)組存儲二叉樹),調(diào)整它們的存儲序,使之成為一個(gè)堆,將堆頂元素輸出,得到n 個(gè)元素中最小(或最大)的元素,這時(shí)堆的根節(jié)點(diǎn)的數(shù)最?。ɑ蛘咦畲螅H缓髮η懊?n-1)個(gè)元素重新調(diào)整使之成為堆,輸出堆頂元素,得到n 個(gè)元素中次小(或次大)的元素。依此類推,直到只有兩個(gè)節(jié)點(diǎn)的堆,并對它們作交換,最后得到有n個(gè)節(jié)點(diǎn)的有序序列。稱這個(gè)過程為堆排序

          因此,實(shí)現(xiàn)堆排序需解決兩個(gè)問題:
          1. 如何將n 個(gè)待排序的數(shù)建成堆;
          2. 輸出堆頂元素后,怎樣調(diào)整剩余n-1 個(gè)元素,使其成為一個(gè)新堆。

          首先討論第二個(gè)問題:輸出堆頂元素后,對剩余n-1元素重新建成堆的調(diào)整過程。
          調(diào)整小頂堆的方法:

          1)設(shè)有m 個(gè)元素的堆,輸出堆頂元素后,剩下m-1 個(gè)元素。將堆底元素送入堆頂((最后一個(gè)元素與堆頂進(jìn)行交換),堆被破壞,其原因僅是根結(jié)點(diǎn)不滿足堆的性質(zhì)。

          2)將根結(jié)點(diǎn)與左、右子樹中較小元素的進(jìn)行交換。

          3)若與左子樹交換:如果左子樹堆被破壞,即左子樹的根結(jié)點(diǎn)不滿足堆的性質(zhì),則重復(fù)方法 (2).

          4)若與右子樹交換,如果右子樹堆被破壞,即右子樹的根結(jié)點(diǎn)不滿足堆的性質(zhì)。則重復(fù)方法 (2).

          5)繼續(xù)對不滿足堆性質(zhì)的子樹進(jìn)行上述交換操作,直到葉子結(jié)點(diǎn),堆被建成。

          稱這個(gè)自根結(jié)點(diǎn)到葉子結(jié)點(diǎn)的調(diào)整過程為篩選。如圖:

          八大排序算法是什么

          再討論對n 個(gè)元素初始建堆的過程。
          建堆方法:對初始序列建堆的過程,就是一個(gè)反復(fù)進(jìn)行篩選的過程。

          1)n 個(gè)結(jié)點(diǎn)的完全二叉樹,則最后一個(gè)結(jié)點(diǎn)是第八大排序算法是什么個(gè)結(jié)點(diǎn)的子樹。

          2)篩選從第八大排序算法是什么個(gè)結(jié)點(diǎn)為根的子樹開始,該子樹成為堆。

          3)之后向前依次對各結(jié)點(diǎn)為根的子樹進(jìn)行篩選,使之成為堆,直到根結(jié)點(diǎn)。

          如圖建堆初始過程:無序序列:(49,38,65,97,76,13,27,49)

          八大排序算法是什么

          算法的實(shí)現(xiàn):

          從算法描述來看,堆排序需要兩個(gè)過程,一是建立堆,二是堆頂與堆的最后一個(gè)元素交換位置。所以堆排序有兩個(gè)函數(shù)組成。一是建堆的滲透函數(shù),二是反復(fù)調(diào)用滲透函數(shù)實(shí)現(xiàn)排序的函數(shù)。

          void print(int a[], int n){ 	for(int j= 0; j<n; j++){ 		cout<<a[j] <<"  "; 	} 	cout<<endl; }    /**  * 已知H[s…m]除了H[s] 外均滿足堆的定義  * 調(diào)整H[s],使其成為大頂堆.即將對第s個(gè)結(jié)點(diǎn)為根的子樹篩選,   *  * @param H是待調(diào)整的堆數(shù)組  * @param s是待調(diào)整的數(shù)組元素的位置  * @param length是數(shù)組的長度  *  */ void HeapAdjust(int H[],int s, int length) { 	int tmp  = H[s]; 	int child = 2*s+1; //左孩子結(jié)點(diǎn)的位置。(i+1 為當(dāng)前調(diào)整結(jié)點(diǎn)的右孩子結(jié)點(diǎn)的位置)     while (child < length) { 		if(child+1 <length && H[child]<H[child+1]) { // 如果右孩子大于左孩子(找到比當(dāng)前待調(diào)整結(jié)點(diǎn)大的孩子結(jié)點(diǎn)) 			++child ; 		} 		if(H[s]<H[child]) {  // 如果較大的子結(jié)點(diǎn)大于父結(jié)點(diǎn) 			H[s] = H[child]; // 那么把較大的子結(jié)點(diǎn)往上移動,替換它的父結(jié)點(diǎn) 			s = child;		 // 重新設(shè)置s ,即待調(diào)整的下一個(gè)結(jié)點(diǎn)的位置 			child = 2*s+1; 		}  else {			 // 如果當(dāng)前待調(diào)整結(jié)點(diǎn)大于它的左右孩子,則不需要調(diào)整,直接退出 			 break; 		} 		H[s] = tmp;			// 當(dāng)前待調(diào)整的結(jié)點(diǎn)放到比其大的孩子結(jié)點(diǎn)位置上 	} 	print(H,length); }   /**  * 初始堆進(jìn)行調(diào)整  * 將H[0..length-1]建成堆  * 調(diào)整完之后第一個(gè)元素是序列的最小的元素  */ void BuildingHeap(int H[], int length) {  	//最后一個(gè)有孩子的節(jié)點(diǎn)的位置 i=  (length -1) / 2 	for (int i = (length -1) / 2 ; i >= 0; --i) 		HeapAdjust(H,i,length); } /**  * 堆排序算法  */ void HeapSort(int H[],int length) {     //初始堆 	BuildingHeap(H, length); 	//從最后一個(gè)元素開始對序列進(jìn)行調(diào)整 	for (int i = length - 1; i > 0; --i) 	{ 		//交換堆頂元素H[0]和堆中最后一個(gè)元素 		int temp = H[i]; H[i] = H[0]; H[0] = temp; 		//每次交換堆頂元素和堆中最后一個(gè)元素之后,都要對堆進(jìn)行調(diào)整 		HeapAdjust(H,0,i);   } }   int main(){ 	int H[10] = {3,1,5,7,2,4,9,6,10,8}; 	cout<<"初始值:"; 	print(H,10); 	HeapSort(H,10); 	//selectSort(a, 8); 	cout<<"結(jié)果:"; 	print(H,10);  }

          分析:

          設(shè)樹深度為k,八大排序算法是什么。從根到葉的篩選,元素比較次數(shù)至多2(k-1)次,交換記錄至多k 次。所以,在建好堆后,排序過程中的篩選次數(shù)不超過下式:

          八大排序算法是什么

          而建堆時(shí)的比較次數(shù)不超過4n 次,因此堆排序最壞情況下,時(shí)間復(fù)雜度也為:O(nlogn )。

          5. 交換排序—冒泡排序(Bubble Sort)


          基本思想:

          在要排序的一組數(shù)中,對當(dāng)前還未排好序的范圍內(nèi)的全部數(shù),自上而下對相鄰的兩個(gè)數(shù)依次進(jìn)行比較和調(diào)整,讓較大的數(shù)往下沉,較小的往上冒。即:每當(dāng)兩相鄰的數(shù)比較后發(fā)現(xiàn)它們的排序與排序要求相反時(shí),就將它們互換。

          冒泡排序的示例:

          八大排序算法是什么

          算法的實(shí)現(xiàn):

          void bubbleSort(int a[], int n){ 	for(int i =0 ; i< n-1; ++i) { 		for(int j = 0; j < n-i-1; ++j) { 			if(a[j] > a[j+1]) 			{ 				int tmp = a[j] ; a[j] = a[j+1] ;  a[j+1] = tmp; 			} 		} 	} }

          冒泡排序算法的改進(jìn)

          對冒泡排序常見的改進(jìn)方法是加入一標(biāo)志性變量exchange,用于標(biāo)志某一趟排序過程中是否有數(shù)據(jù)交換,如果進(jìn)行某一趟排序時(shí)并沒有進(jìn)行數(shù)據(jù)交換,則說明數(shù)據(jù)已經(jīng)按要求排列好,可立即結(jié)束排序,避免不必要的比較過程。本文再提供以下兩種改進(jìn)算法:

          1.設(shè)置一標(biāo)志性變量pos,用于記錄每趟排序中最后一次進(jìn)行交換的位置。由于pos位置之后的記錄均已交換到位,故在進(jìn)行下一趟排序時(shí)只要掃描到pos位置即可。

          改進(jìn)后算法如下:

          void Bubble_1 ( int r[], int n) { 	int i= n -1;  //初始時(shí),最后位置保持不變 	while ( i> 0) {  		int pos= 0; //每趟開始時(shí),無記錄交換 		for (int j= 0; j< i; j++) 			if (r[j]> r[j+1]) { 				pos= j; //記錄交換的位置  				int tmp = r[j]; r[j]=r[j+1];r[j+1]=tmp; 			}  		i= pos; //為下一趟排序作準(zhǔn)備 	 }  }

          2.傳統(tǒng)冒泡排序中每一趟排序操作只能找到一個(gè)最大值或最小值,我們考慮利用在每趟排序中進(jìn)行正向和反向兩遍冒泡的方法一次可以得到兩個(gè)最終值(最大者和最小者) , 從而使排序趟數(shù)幾乎減少了一半。

          改進(jìn)后的算法實(shí)現(xiàn)為:

          void Bubble_2 ( int r[], int n){ 	int low = 0;  	int high= n -1; //設(shè)置變量的初始值 	int tmp,j; 	while (low < high) { 		for (j= low; j< high; ++j) //正向冒泡,找到最大者 			if (r[j]> r[j+1]) { 				tmp = r[j]; r[j]=r[j+1];r[j+1]=tmp; 			}  		--high;					//修改high值, 前移一位 		for ( j=high; j>low; --j) //反向冒泡,找到最小者 			if (r[j]<r[j-1]) { 				tmp = r[j]; r[j]=r[j-1];r[j-1]=tmp; 			} 		++low;					//修改low值,后移一位 	}  }

          6. 交換排序—快速排序(Quick Sort)


          基本思想:

          1)選擇一個(gè)基準(zhǔn)元素,通常選擇第一個(gè)元素或者最后一個(gè)元素,

          2)通過一趟排序講待排序的記錄分割成獨(dú)立的兩部分,其中一部分記錄的元素值均比基準(zhǔn)元素值小。另一部分記錄的 元素值比基準(zhǔn)值大。

          3)此時(shí)基準(zhǔn)元素在其排好序后的正確位置

          4)然后分別對這兩部分記錄用同樣的方法繼續(xù)進(jìn)行排序,直到整個(gè)序列有序。

          快速排序的示例:

          (a)一趟排序的過程:

          八大排序算法是什么

          (b)排序的全過程

          八大排序算法是什么

          算法的實(shí)現(xiàn):

          遞歸實(shí)現(xiàn):

          void print(int a[], int n){ 	for(int j= 0; j<n; j++){ 		cout<<a[j] <<"  "; 	} 	cout<<endl; }  void swap(int *a, int *b) { 	int tmp = *a; 	*a = *b; 	*b = tmp; }  int partition(int a[], int low, int high) { 	int privotKey = a[low];								//基準(zhǔn)元素 	while(low < high){								    //從表的兩端交替地向中間掃描 		while(low < high  && a[high] >= privotKey) --high;  //從high 所指位置向前搜索,至多到low+1 位置。將比基準(zhǔn)元素小的交換到低端 		swap(&a[low], &a[high]); 		while(low < high  && a[low] <= privotKey ) ++low; 		swap(&a[low], &a[high]); 	} 	print(a,10); 	return low; }   void quickSort(int a[], int low, int high){ 	if(low < high){ 		int privotLoc = partition(a,  low,  high);  //將表一分為二 		quickSort(a,  low,  privotLoc -1);			//遞歸對低子表遞歸排序 		quickSort(a,   privotLoc + 1, high);		//遞歸對高子表遞歸排序 	} }  int main(){ 	int a[10] = {3,1,5,7,2,4,9,6,10,8}; 	cout<<"初始值:"; 	print(a,10); 	quickSort(a,0,9); 	cout<<"結(jié)果:"; 	print(a,10);  }

          分析:

          快速排序是通常被認(rèn)為在同數(shù)量級(O(nlog2n))的排序方法中平均性能最好的。但若初始序列按關(guān)鍵碼有序或基本有序時(shí),快排序反而蛻化為冒泡排序。為改進(jìn)之,通常以“三者取中法”來選取基準(zhǔn)記錄,即將排序區(qū)間的兩個(gè)端點(diǎn)與中點(diǎn)三個(gè)記錄關(guān)鍵碼居中的調(diào)整為支點(diǎn)記錄??焖倥判蚴且粋€(gè)不穩(wěn)定的排序方法。

          快速排序的改進(jìn)

          在本改進(jìn)算法中,只對長度大于k的子序列遞歸調(diào)用快速排序,讓原序列基本有序,然后再對整個(gè)基本有序序列用插入排序算法排序。實(shí)踐證明,改進(jìn)后的算法時(shí)間復(fù)雜度有所降低,且當(dāng)k取值為 8 左右時(shí),改進(jìn)算法的性能最佳。算法思想如下:

          void print(int a[], int n){ 	for(int j= 0; j<n; j++){ 		cout<<a[j] <<"  "; 	} 	cout<<endl; }  void swap(int *a, int *b) { 	int tmp = *a; 	*a = *b; 	*b = tmp; }  int partition(int a[], int low, int high) { 	int privotKey = a[low];					//基準(zhǔn)元素 	while(low < high){					//從表的兩端交替地向中間掃描 		while(low < high  && a[high] >= privotKey) --high; //從high 所指位置向前搜索,至多到low+1 位置。將比基準(zhǔn)元素小的交換到低端 		swap(&a[low], &a[high]); 		while(low < high  && a[low] <= privotKey ) ++low; 		swap(&a[low], &a[high]); 	} 	print(a,10); 	return low; }   void qsort_improve(int r[ ],int low,int high, int k){ 	if( high -low > k ) { //長度大于k時(shí)遞歸, k為指定的數(shù) 		int pivot = partition(r, low, high); // 調(diào)用的Partition算法保持不變 		qsort_improve(r, low, pivot - 1,k); 		qsort_improve(r, pivot + 1, high,k); 	}  }  void quickSort(int r[], int n, int k){ 	qsort_improve(r,0,n,k);//先調(diào)用改進(jìn)算法Qsort使之基本有序  	//再用插入排序?qū)居行蛐蛄信判?	for(int i=1; i<=n;i ++){ 		int tmp = r[i];  		int j=i-1; 		while(tmp < r[j]){ 			r[j+1]=r[j]; j=j-1;  		} 		r[j+1] = tmp; 	}   }     int main(){ 	int a[10] = {3,1,5,7,2,4,9,6,10,8}; 	cout<<"初始值:"; 	print(a,10); 	quickSort(a,9,4); 	cout<<"結(jié)果:"; 	print(a,10);  }

          7. 歸并排序(Merge Sort)


          基本思想:

          歸并(Merge)排序法是將兩個(gè)(或兩個(gè)以上)有序表合并成一個(gè)新的有序表,即把待排序序列分為若干個(gè)子序列,每個(gè)子序列是有序的。然后再把有序子序列合并為整體有序序列。

          歸并排序示例:

          八大排序算法是什么

          合并方法:

          設(shè)r[i…n]由兩個(gè)有序子表r[i…m]和r[m+1…n]組成,兩個(gè)子表長度分別為n-i +1、n-m。

          • j=m+1;k=i;i=i; //置兩個(gè)子表的起始下標(biāo)及輔助數(shù)組的起始下標(biāo)

          • 若i>m 或j>n,轉(zhuǎn)⑷ //其中一個(gè)子表已合并完,比較選取結(jié)束

          • //選取r[i]和r[j]較小的存入輔助數(shù)組rf
            如果r[i]<r[j],rf[k]=r[i]; i++; k++; 轉(zhuǎn)⑵
            否則,rf[k]=r[j]; j++; k++; 轉(zhuǎn)⑵

          • //將尚未處理完的子表中元素存入rf
            如果i<=m,將r[i…m]存入rf[k…n] //前一子表非空
            如果j<=n , 將r[j…n] 存入rf[k…n] //后一子表非空

          • 合并結(jié)束。

          //將r[i…m]和r[m +1 …n]歸并到輔助數(shù)組rf[i…n] void Merge(ElemType *r,ElemType *rf, int i, int m, int n) { 	int j,k; 	for(j=m+1,k=i; i<=m && j <=n ; ++k){ 		if(r[j] < r[i]) rf[k] = r[j++]; 		else rf[k] = r[i++]; 	} 	while(i <= m)  rf[k++] = r[i++]; 	while(j <= n)  rf[k++] = r[j++]; }

          歸并的迭代算法

          1 個(gè)元素的表總是有序的。所以對n 個(gè)元素的待排序列,每個(gè)元素可看成1 個(gè)有序子表。對子表兩兩合并生成n/2個(gè)子表,所得子表除最后一個(gè)子表長度可能為1 外,其余子表長度均為2。再進(jìn)行兩兩合并,直到生成n 個(gè)元素按關(guān)鍵碼有序的表。

          void print(int a[], int n){ 	for(int j= 0; j<n; j++){ 		cout<<a[j] <<"  "; 	} 	cout<<endl; }  //將r[i…m]和r[m +1 …n]歸并到輔助數(shù)組rf[i…n] void Merge(ElemType *r,ElemType *rf, int i, int m, int n) { 	int j,k; 	for(j=m+1,k=i; i<=m && j <=n ; ++k){ 		if(r[j] < r[i]) rf[k] = r[j++]; 		else rf[k] = r[i++]; 	} 	while(i <= m)  rf[k++] = r[i++]; 	while(j <= n)  rf[k++] = r[j++]; 	print(rf,n+1); }  void MergeSort(ElemType *r, ElemType *rf, int lenght) {  	int len = 1; 	ElemType *q = r ; 	ElemType *tmp ; 	while(len < lenght) { 		int s = len; 		len = 2 * s ; 		int i = 0; 		while(i+ len <lenght){ 			Merge(q, rf,  i, i+ s-1, i+ len-1 ); //對等長的兩個(gè)子表合并 			i = i+ len; 		} 		if(i + s < lenght){ 			Merge(q, rf,  i, i+ s -1, lenght -1); //對不等長的兩個(gè)子表合并 		} 		tmp = q; q = rf; rf = tmp; //交換q,rf,以保證下一趟歸并時(shí),仍從q 歸并到rf 	} }   int main(){ 	int a[10] = {3,1,5,7,2,4,9,6,10,8}; 	int b[10]; 	MergeSort(a, b, 10); 	print(b,10); 	cout<<"結(jié)果:"; 	print(a,10);  }

          兩路歸并的遞歸算法

          void MSort(ElemType *r, ElemType *rf,int s, int t) {  	ElemType *rf2; 	if(s==t) r[s] = rf[s]; 	else 	{  		int m=(s+t)/2;			/*平分*p 表*/ 		MSort(r, rf2, s, m);		/*遞歸地將p[s…m]歸并為有序的p2[s…m]*/ 		MSort(r, rf2, m+1, t);		/*遞歸地將p[m+1…t]歸并為有序的p2[m+1…t]*/ 		Merge(rf2, rf, s, m+1,t);	/*將p2[s…m]和p2[m+1…t]歸并到p1[s…t]*/ 	} } void MergeSort_recursive(ElemType *r, ElemType *rf, int n) {   /*對順序表*p 作歸并排序*/ 	MSort(r, rf,0, n-1); }

          8. 桶排序/基數(shù)排序(Radix Sort)

          說基數(shù)排序之前,我們先說桶排序:

          基本思想:是將陣列分到有限數(shù)量的桶子里。每個(gè)桶子再個(gè)別排序(有可能再使用別的排序算法或是以遞回方式繼續(xù)使用桶排序進(jìn)行排序)。桶排序是鴿巢排序的一種歸納結(jié)果。當(dāng)要被排序的陣列內(nèi)的數(shù)值是均勻分配的時(shí)候,桶排序使用線性時(shí)間(Θ(n))。但桶排序并不是 比較排序,他不受到 O(n log n) 下限的影響。
          簡單來說,就是把數(shù)據(jù)分組,放在一個(gè)個(gè)的桶中,然后對每個(gè)桶里面的在進(jìn)行排序。

          例如要對大小為[1..1000]范圍內(nèi)的n個(gè)整數(shù)A[1..n]排序

          首先,可以把桶設(shè)為大小為10的范圍,具體而言,設(shè)集合B[1]存儲[1..10]的整數(shù),集合B[2]存儲 (10..20]的整數(shù),……集合B[i]存儲( (i-1)*10, i*10]的整數(shù),i = 1,2,..100??偣灿? 100個(gè)桶。

          然后,對A[1..n]從頭到尾掃描一遍,把每個(gè)A[i]放入對應(yīng)的桶B[j]中。 再對這100個(gè)桶中每個(gè)桶里的數(shù)字排序,這時(shí)可用冒泡,選擇,乃至快排,一般來說任 何排序法都可以。

          最后,依次輸出每個(gè)桶里面的數(shù)字,且每個(gè)桶中的數(shù)字從小到大輸出,這 樣就得到所有數(shù)字排好序的一個(gè)序列了。

          假設(shè)有n個(gè)數(shù)字,有m個(gè)桶,如果數(shù)字是平均分布的,則每個(gè)桶里面平均有n/m個(gè)數(shù)字。如果

          對每個(gè)桶中的數(shù)字采用快速排序,那么整個(gè)算法的復(fù)雜度是

          O(n + m * n/m*log(n/m)) = O(n + nlogn – nlogm)

          從上式看出,當(dāng)m接近n的時(shí)候,桶排序復(fù)雜度接近O(n)

          當(dāng)然,以上復(fù)雜度的計(jì)算是基于輸入的n個(gè)數(shù)字是平均分布這個(gè)假設(shè)的。這個(gè)假設(shè)是很強(qiáng)的 ,實(shí)際應(yīng)用中效果并沒有這么好。如果所有的數(shù)字都落在同一個(gè)桶中,那就退化成一般的排序了。

          前面說的幾大排序算法 ,大部分時(shí)間復(fù)雜度都是O(n2),也有部分排序算法時(shí)間復(fù)雜度是O(nlogn)。而桶式排序卻能實(shí)現(xiàn)O(n)的時(shí)間復(fù)雜度。但桶排序的缺點(diǎn)是:

          1)首先是空間復(fù)雜度比較高,需要的額外開銷大。排序有兩個(gè)數(shù)組的空間開銷,一個(gè)存放待排序數(shù)組,一個(gè)就是所謂的桶,比如待排序值是從0到m-1,那就需要m個(gè)桶,這個(gè)桶數(shù)組就要至少m個(gè)空間。

          2)其次待排序的元素都要在一定的范圍內(nèi)等等。

          桶式排序是一種分配排序。分配排序的特定是不需要進(jìn)行關(guān)鍵碼的比較,但前提是要知道待排序列的一些具體情況。

          分配排序的基本思想:說白了就是進(jìn)行多次的桶式排序。

          基數(shù)排序過程無須比較關(guān)鍵字,而是通過“分配”和“收集”過程來實(shí)現(xiàn)排序。它們的時(shí)間復(fù)雜度可達(dá)到線性階:O(n)。

          實(shí)例:

          撲克牌中52 張牌,可按花色和面值分成兩個(gè)字段,其大小關(guān)系為:
          花色: 梅花< 方塊< 紅心< 黑心 八大排序算法是什么
          面值: 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K < A

          若對撲克牌按花色、面值進(jìn)行升序排序,得到如下序列:

          八大排序算法是什么

          即兩張牌,若花色不同,不論面值怎樣,花色低的那張牌小于花色高的,只有在同花色情況下,大小關(guān)系才由面值的大小確定。這就是多關(guān)鍵碼排序。

          為得到排序結(jié)果,我們討論兩種排序方法。
          方法1:先對花色排序,將其分為4 個(gè)組,即梅花組、方塊組、紅心組、黑心組。再對每個(gè)組分別按面值進(jìn)行排序,最后,將4 個(gè)組連接起來即可。
          方法2:先按13 個(gè)面值給出13 個(gè)編號組(2 號,3 號,…,A 號),將牌按面值依次放入對應(yīng)的編號組,分成13 堆。再按花色給出4 個(gè)編號組(梅花、方塊、紅心、黑心),將2號組中牌取出分別放入對應(yīng)花色組,再將3 號組中牌取出分別放入對應(yīng)花色組,……,這樣,4 個(gè)花色組中均按面值有序,然后,將4 個(gè)花色組依次連接起來即可。

          設(shè)n 個(gè)元素的待排序列包含d 個(gè)關(guān)鍵碼{k1,k2,…,kd},則稱序列對關(guān)鍵碼{k1,k2,…,kd}有序是指:對于序列中任兩個(gè)記錄r[i]和r[j](1≤i≤j≤n)都滿足下列有序關(guān)系:

          八大排序算法是什么

          其中k1 稱為最主位關(guān)鍵碼,kd 稱為最次位關(guān)鍵碼 。

          兩種多關(guān)鍵碼排序方法:

          多關(guān)鍵碼排序按照從最主位關(guān)鍵碼到最次位關(guān)鍵碼或從最次位到最主位關(guān)鍵碼的順序逐次排序,分兩種方法:

          最高位優(yōu)先(Most Significant Digit first)法,簡稱MSD 法

          1)先按k1 排序分組,將序列分成若干子序列,同一組序列的記錄中,關(guān)鍵碼k1 相等。

          2)再對各組按k2 排序分成子組,之后,對后面的關(guān)鍵碼繼續(xù)這樣的排序分組,直到按最次位關(guān)鍵碼kd 對各子組排序后。

          3)再將各組連接起來,便得到一個(gè)有序序列。撲克牌按花色、面值排序中介紹的方法一即是MSD 法。

          最低位優(yōu)先(Least Significant Digit first)法,簡稱LSD 法

          1) 先從kd 開始排序,再對kd-1進(jìn)行排序,依次重復(fù),直到按k1排序分組分成最小的子序列后。

          2) 最后將各個(gè)子序列連接起來,便可得到一個(gè)有序的序列, 撲克牌按花色、面值排序中介紹的方法二即是LSD 法。

          基于LSD方法的鏈?zhǔn)交鶖?shù)排序的基本思想

            “多關(guān)鍵字排序”的思想實(shí)現(xiàn)“單關(guān)鍵字排序”。對數(shù)字型或字符型的單關(guān)鍵字,可以看作由多個(gè)數(shù)位或多個(gè)字符構(gòu)成的多關(guān)鍵字,此時(shí)可以采用“分配-收集”的方法進(jìn)行排序,這一過程稱作基數(shù)排序法,其中每個(gè)數(shù)字或字符可能的取值個(gè)數(shù)稱為基數(shù)。比如,撲克牌的花色基數(shù)為4,面值基數(shù)為13。在整理撲克牌時(shí),既可以先按花色整理,也可以先按面值整理。按花色整理時(shí),先按紅、黑、方、花的順序分成4摞(分配),再按此順序再疊放在一起(收集),然后按面值的順序分成13摞(分配),再按此順序疊放在一起(收集),如此進(jìn)行二次分配和收集即可將撲克牌排列有序。

          基數(shù)排序:

          是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次類推,直到最高位。有時(shí)候有些屬性是有優(yōu)先級順序的,先按低優(yōu)先級排序,再按高優(yōu)先級排序。最后的次序就是高優(yōu)先級高的在前,高優(yōu)先級相同的低優(yōu)先級高的在前。基數(shù)排序基于分別排序,分別收集,所以是穩(wěn)定的。

          算法實(shí)現(xiàn):

          Void RadixSort(Node L[],length,maxradix) {    int m,n,k,lsp;    k=1;m=1;    int temp[10][length-1];    Empty(temp); //清空臨時(shí)空間    while(k<maxradix) //遍歷所有關(guān)鍵字    {      for(int i=0;i<length;i++) //分配過程     {        if(L[i]<m)           Temp[0][n]=L[i];        else           Lsp=(L[i]/m)%10; //確定關(guān)鍵字        Temp[lsp][n]=L[i];        n++;    }    CollectElement(L,Temp); //收集    n=0;    m=m*10;   k++;  } }

          總結(jié)


          各種排序的穩(wěn)定性,時(shí)間復(fù)雜度和空間復(fù)雜度總結(jié):

          八大排序算法是什么

          我們比較時(shí)間復(fù)雜度函數(shù)的情況:

          八大排序算法是什么

          時(shí)間復(fù)雜度函數(shù)O(n)的增長情況

          八大排序算法是什么

          所以對n較大的排序記錄。一般的選擇都是時(shí)間復(fù)雜度為O(nlog2n)的排序方法。

          時(shí)間復(fù)雜度來說:

          (1)平方階(O(n2))排序
            各類簡單排序:直接插入、直接選擇和冒泡排序;
          (2)線性對數(shù)階(O(nlog2n))排序
            快速排序、堆排序和歸并排序;
          (3)O(n1+§))排序,§是介于0和1之間的常數(shù)。

          希爾排序
          (4)線性階(O(n))排序
            基數(shù)排序,此外還有桶、箱排序。

          說明:

          當(dāng)原表有序或基本有序時(shí),直接插入排序和冒泡排序?qū)⒋蟠鬁p少比較次數(shù)和移動記錄的次數(shù),時(shí)間復(fù)雜度可降至O(n);

          而快速排序則相反,當(dāng)原表基本有序時(shí),將蛻化為冒泡排序,時(shí)間復(fù)雜度提高為O(n2);

          原表是否有序,對簡單選擇排序、堆排序、歸并排序和基數(shù)排序的時(shí)間復(fù)雜度影響不大。

          穩(wěn)定性:

          排序算法的穩(wěn)定性:若待排序的序列中,存在多個(gè)具有相同關(guān)鍵字的記錄,經(jīng)過排序, 這些記錄的相對次序保持不變,則稱該算法是穩(wěn)定的;若經(jīng)排序后,記錄的相對 次序發(fā)生了改變,則稱該算法是不穩(wěn)定的。
          穩(wěn)定性的好處:排序算法如果是穩(wěn)定的,那么從一個(gè)鍵上排序,然后再從另一個(gè)鍵上排序,第一個(gè)鍵排序的結(jié)果可以為第二個(gè)鍵排序所用?;鶖?shù)排序就是這樣,先按低位排序,逐次按高位排序,低位相同的元素其順序再高位也相同時(shí)是不會改變的。另外,如果排序算法穩(wěn)定,可以避免多余的比較;

          穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序

          不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序

          選擇排序算法準(zhǔn)則:

          每種排序算法都各有優(yōu)缺點(diǎn)。因此,在實(shí)用時(shí)需根據(jù)不同情況適當(dāng)選用,甚至可以將多種方法結(jié)合起來使用。

          選擇排序算法的依據(jù)

          影響排序的因素有很多,平均時(shí)間復(fù)雜度低的算法并不一定就是最優(yōu)的。相反,有時(shí)平均時(shí)間復(fù)雜度高的算法可能更適合某些特殊情況。同時(shí),選擇算法時(shí)還得考慮它的可讀性,以利于軟件的維護(hù)。一般而言,需要考慮的因素有以下四點(diǎn):

          1.待排序的記錄數(shù)目n的大?。?/p>

          2.記錄本身數(shù)據(jù)量的大小,也就是記錄中除關(guān)鍵字外的其他信息量的大小;

          3.關(guān)鍵字的結(jié)構(gòu)及其分布情況;

          4.對排序穩(wěn)定性的要求。

          設(shè)待排序元素的個(gè)數(shù)為n.

          1)當(dāng)n較大,則應(yīng)采用時(shí)間復(fù)雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸并排序序。

          快速排序:是目前基于比較的內(nèi)部排序中被認(rèn)為是最好的方法,當(dāng)待排序的關(guān)鍵字是隨機(jī)分布時(shí),快速排序的平均時(shí)間最短;
          堆排序 : 如果內(nèi)存空間允許且要求穩(wěn)定性的,

          歸并排序:它有一定數(shù)量的數(shù)據(jù)移動,所以我們可能過與插入排序組合,先獲得一定長度的序列,然后再合并,在效率上將有所提高。

          2) 當(dāng)n較大,內(nèi)存空間允許,且要求穩(wěn)定性 =》歸并排序

          3)當(dāng)n較小,可采用直接插入或直接選擇排序。

          直接插入排序:當(dāng)元素分布有序,直接插入排序?qū)⒋蟠鬁p少比較次數(shù)和移動記錄的次數(shù)。

          直接選擇排序 :元素分布有序,如果不要求穩(wěn)定性,選擇直接選擇排序

          5)一般不使用或不直接使用傳統(tǒng)的冒泡排序。

          6)基數(shù)排序
          它是一種穩(wěn)定的排序算法,但有一定的局限性:
            1、關(guān)鍵字可分解。
            2、記錄的關(guān)鍵字位數(shù)較少,如果密集更好
            3、如果是數(shù)字時(shí),最好是無符號的,否則將增加相應(yīng)的映射復(fù)雜度,可先將其正負(fù)分開排序。

          贊(0)
          分享到: 更多 (0)
          網(wǎng)站地圖   滬ICP備18035694號-2    滬公網(wǎng)安備31011702889846號